Development of indium-rich InGaN epilayers for integrated tandem solar cells
نویسندگان
چکیده
InGaN epilayers have been investigated for use in photovoltaic solar cells for the past years. At present, almost all photovoltaic device structures reported have exhibited very low short circuit currents and thus very low solar conversion efficiency. This phenomenon has been attributed to point and extended defect chemistry in InGaN epilayers (e.g. vacancies, misfit dislocations, and V-defects), as well as to spinodal decomposition of the strained InGaN wurtzite lattice system. These defects become more dominant for higher indium concentration InGaN epilayers needed for multijunction photovoltaic device structures. In this work, we will report on the growth and characterization of indium-rich InGaN epilayers that have been grown by novel MOCVD growth technology, including the growth at superatmospheric reactor pressures.
منابع مشابه
Microstructural Characterization of High Indium-Composition InXGa1−XN Epilayers Grown on c-Plane Sapphire Substrates
The growth of high-quality indium ~In!-rich InXGa1 XN alloys is technologically important for applications to attain highly efficient green light-emitting diodes and solar cells. However, phase separation and composition modulation in In-rich InXGa1 XN alloys are inevitable phenomena that degrade the crystal quality of In-rich InXGa1 XN layers. Composition modulations were observed in the In-ri...
متن کاملMicrostructural characterization of high indium-composition InXGa₁-XN epilayers grown on c-plane sapphire substrates.
The growth of high-quality indium (In)-rich In(X)Ga(1-X)N alloys is technologically important for applications to attain highly efficient green light-emitting diodes and solar cells. However, phase separation and composition modulation in In-rich In(X )Ga(1-X)N alloys are inevitable phenomena that degrade the crystal quality of In-rich In(X)Ga(1-X)N layers. Composition modulations were observed...
متن کاملNumerical simulations of the current-matching effect and operation mechanisms on the performance of InGaN/Si tandem cells
Numerical simulations are conducted to study the current-matching effect and operation mechanisms in and to design the optimized device structure of InGaN/Si tandem cells. The characteristics of short circuit current density (J sc), open circuit voltage (V oc), fill factor (FF), and conversion efficiency (η) of InGaN/Si tandem cells are determined by the current-matching effect. The similar tre...
متن کاملNumerical Simulation of CdS/CIGS Tandem Multi-Junction Solar Cells with AMPS-1D
Numerical modeling of polycrystalline thin-film solar cell serves as an imperative procedure to test the suitability of proposed physical clarification and to anticipate the effect of physical changes on cell performance. All in all, this must be conducted with only partial knowledge of input parameters. In this paper, we evaluated the numerical simulation of CdS/CIGS tandem multi junction sola...
متن کاملEnhanced power conversion efficiency in InGaN-based solar cells via graded composition multiple quantum wells.
This work demonstrates the enhanced power conversion efficiency (PCE) in InGaN/GaN multiple quantum well (MQWs) solar cells with gradually decreasing indium composition in quantum wells (GQWs) toward p-GaN as absorber. The GQW can improve the fill factor from 42% to 62% and enhance the short current density from 0.8 mA/cm2 to 0.92 mA/cm2, as compares to the typical MQW sol...
متن کامل